Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metab Eng ; 81: 227-237, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072357

RESUMO

5-Aminovaleric acid (5-AVA), 5-hydroxyvalerate (5HV), copolymer P(3HB-co-5HV) of 3-hydroxybutyrate (3HB) and 5HV were produced from L-lysine as a substrate by recombinant Halomonas bluephagenesis constructed based on codon optimization, deletions of competitive pathway and L-lysine export protein, and three copies of davBA genes encoding L-lysine monooxygenase (DavB) and 5-aminovaleramide amidohydrolase (DavA) inserted into its genome to form H. bluephagenesis YF117ΔgabT1+2, which produced 16.4 g L-1 and 67.4 g L-1 5-AVA in flask cultures and in 7 L bioreactor, respectively. It was able to de novo synthesize 5-AVA from glucose by L-lysine-overproducing H. bluephagenesis TD226. Corn steep liquor was used instead of yeast extract for cost reduction during the 5-AVA production. Using promoter engineering based on Pporin mutant library for downstream genes, H. bluephagenesis YF117 harboring pSEVA341-Pporin42-yqhDEC produced 6 g L-1 5HV in shake flask growth, while H. bluephagenesis YF117 harboring pSEVA341-Pporin42-yqhDEC-Pporin278-phaCRE-abfT synthesized 42 wt% P(3HB-co-4.8 mol% 5HV) under the same condition. Thus, H. bluephagenesis was successfully engineered to produce 5-AVA and 5HV in supernatant and intracellular P(3HB-co-5HV) utilizing L-lysine as the substrate.


Assuntos
Halomonas , Engenharia Metabólica , Lisina/genética , Lisina/metabolismo , Halomonas/genética , Halomonas/metabolismo , Ácido 3-Hidroxibutírico/metabolismo , Poliésteres/metabolismo , Porinas/genética , Porinas/metabolismo
2.
Metab Eng ; 81: 249-261, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38159902

RESUMO

Predictability and robustness are challenges for bioproduction because of the unstable intracellular synthetic activities. With the deeper understanding of the gene expression process, fine-tuning has become a meaningful tool for biosynthesis optimization. This study characterized several gene expression elements and constructed a multiple inducible system that responds to ten different small chemical inducers in halophile bacterium Halomonas bluephagenesis. Genome insertion of regulators was conducted for the purpose of gene cluster stabilization and regulatory plasmid simplification. Additionally, dynamic ranges of the multiple inducible systems were tuned by promoter sequence mutations to achieve diverse scopes for high-resolution gene expression control. The multiple inducible system was successfully employed to precisely control chromoprotein expression, lycopene and poly-3-hydroxybutyrate (PHB) biosynthesis, resulting in colorful bacterial pictures, optimized cell growth, lycopene and PHB accumulation. This study demonstrates a desirable approach for fine-tuning of rational and efficient gene expressions, displaying the significance for metabolic pathway optimization.


Assuntos
Halomonas , Poliésteres , Poliésteres/metabolismo , Halomonas/genética , Halomonas/metabolismo , Licopeno/metabolismo , Biotecnologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Engenharia Metabólica/métodos
3.
Metab Eng ; 79: 146-158, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37543135

RESUMO

Halophilic Halomonas bluephagenesis has been engineered to produce various added-value bio-compounds with reduced costs. However, the salt-stress regulatory mechanism remained unclear. H. bluephagenesis was randomly mutated to obtain low-salt growing mutants via atmospheric and room temperature plasma (ARTP). The resulted H. bluephagenesis TDH4A1B5 was constructed with the chromosomal integration of polyhydroxyalkanoates (PHA) synthesis operon phaCAB and deletion of phaP1 gene encoding PHA synthesis associated protein phasin, forming H. bluephagenesis TDH4A1B5P, which led to increased production of poly(3-hydroxybutyrate) (PHB) and poly(3-hydroxybutyrate-co-4-hydrobutyrate) (P34HB) by over 1.4-fold. H. bluephagenesis TDH4A1B5P also enhanced production of ectoine and threonine by 50% and 77%, respectively. A total 101 genes related to salinity tolerance was identified and verified via comparative genomic analysis among four ARTP mutated H. bluephagenesis strains. Recombinant H. bluephagenesis TDH4A1B5P was further engineered for PHA production utilizing sodium acetate or gluconate as sole carbon source. Over 33% cost reduction of PHA production could be achieved using recombinant H. bluephagenesis TDH4A1B5P. This study successfully developed a low-salt tolerant chassis H. bluephagenesis TDH4A1B5P and revealed salt-stress related genes of halophilic host strains.


Assuntos
Halomonas , Poli-Hidroxialcanoatos , Halomonas/genética , Halomonas/metabolismo , Análise Custo-Benefício , Ácido 3-Hidroxibutírico/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Poliésteres/metabolismo
4.
Trends Biotechnol ; 41(3): 342-357, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36535816

RESUMO

Microbial biomanufacturing, powered by the advances of synthetic biology, has attracted growing interest for the production of diverse products. In contrast to conventional microbes, extremophiles have shown better performance for low-cost production owing to their outstanding growth and synthesis capacity under stress conditions, allowing unsterilized fermentation processes. We review increasing numbers of products already manufactured utilizing extremophiles in recent years. In addition, genetic parts, molecular tools, and manipulation approaches for extremophile engineering are also summarized, and challenges and opportunities are predicted for non-conventional chassis. Next-generation industrial biotechnology (NGIB) based on engineered extremophiles promises to simplify biomanufacturing processes and achieve open and continuous fermentation, without sterilization, and utilizing low-cost substrates, making NGIB an attractive green process for sustainable manufacturing.


Assuntos
Extremófilos , Biologia Sintética , Biotecnologia , Fermentação , Indústrias , Engenharia Metabólica
5.
Front Bioeng Biotechnol ; 10: 966598, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928942

RESUMO

With the rapid development of synthetic biology, a variety of biopolymers can be obtained by recombinant microorganisms. Polyhydroxyalkanoates (PHA) is one of the most popular one with promising material properties, such as biodegradability and biocompatibility against the petrol-based plastics. This study reviews the recent studies focusing on the microbial synthesis of PHA, including chassis engineering, pathways engineering for various substrates utilization and PHA monomer synthesis, and PHA synthase modification. In particular, advances in metabolic engineering of dominant workhorses, for example Halomonas, Ralstonia eutropha, Escherichia coli and Pseudomonas, with outstanding PHA accumulation capability, were summarized and discussed, providing a full landscape of diverse PHA biosynthesis. Meanwhile, we also introduced the recent efforts focusing on structural analysis and mutagenesis of PHA synthase, which significantly determines the polymerization activity of varied monomer structures and PHA molecular weight. Besides, perspectives and solutions were thus proposed for achieving scale-up PHA of low cost with customized material property in the coming future.

6.
Bioresour Technol ; 355: 127270, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35526716

RESUMO

Halomonas bluephagenesis has been engineered to produce flexible copolymers P34HB or poly(3-hydroxybutyrate-co-4-hydroxybutyrate) from glucose and petrol-chemical precursor, γ-butyrolactone. Herein, gene cluster aldD-dhaT was constructed in recombinant H. bluephagenesis for catalyzing 1,4-butanediol (BDO) into 4-hydroxybutyrate, which could grow to 86 g L-1 dry cell mass (DCM) containing 77 wt% P(3HB-co-14 mol% 4HB) in 7-L bioreactor fed with glucose and bio-based BDO. Furthermore, 4HB monomer ratio could be increased to 16 mol% by engineered H. bluephagenesis TDH4-WZY254 with defected outer-membrane. Upon deletion of 4HB degradation pathway, followed by aldD-dhaT integration, the resulted H. bluephagenesis TDB141ΔAC was grown to 95 g L-1 DCM containing 79 wt% P(3HB-co-14 mol% 4HB) with a BDO conversion efficiency of 86% under fed-batch fermentation. Notably, 4HB molar ratio can be significantly improved to 21 mol% with negligible effects on cell growth and P34HB synthesis by adding 50% more BDO. This study successfully demonstrated a fully bio-based P34HB effectively produced by H. bluephagenesis.


Assuntos
Halomonas , Ácido 3-Hidroxibutírico/metabolismo , Butileno Glicóis , Glucose/metabolismo , Halomonas/genética , Halomonas/metabolismo , Hidroxibutiratos/metabolismo , Poliésteres/metabolismo
7.
Metab Eng ; 72: 325-336, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35513297

RESUMO

Ligand-induced system plays an important role for microbial engineering due to its tunable gene expression control over timings and levels. An oleic acid (OA)-induced system was recently constructed based on protein FadR, a transcriptional regulator involved in fatty acids metabolism, for metabolic control in Escherichia coli. In this study, we constructed a synthetic FadR-based OA-induced systems in Halomonas bluephagenesis by hybridizing the porin promoter core region and FadR-binding operator (fadO). The dynamic control range was optimized over 150-fold, and expression leakage was significantly reduced by tuning FadR expression and positioning fadO, forming a series of OA-induced systems with various expression strengths, respectively. Additionally, ligand orthogonality and cross-species portability were also studied and showed highly linear correlation among Halomonas spp., Escherichia coli and Pseudomonas spp. Finally, OA-induced systems with medium- and small-dynamic control ranges were employed to dynamically control the expression levels of morphology associated gene minCD, and monomer precursor 4-hydroxybutyrate-CoA (4HB-CoA) synthesis pathway for polyhydroxyalkanoates (PHA), respectively, in the presence of oleic acid as an inducer. As a result, over 10 g/L of poly-3-hydroxybutyrate (PHB) accumulated by elongated cell sizes, and 6 g/L of P(3HB-co-9.57 mol% 4HB) were obtained by controlling the dose and induction time of oleic acid only. This study provides a systematic approach for ligand-induced system engineering, and demonstrates an alternative genetic tool for dynamic control of industrial biotechnology.


Assuntos
Halomonas , Poli-Hidroxialcanoatos , Coenzima A/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Halomonas/genética , Halomonas/metabolismo , Ligantes , Engenharia Metabólica , Ácido Oleico/metabolismo , Poliésteres/metabolismo , Poli-Hidroxialcanoatos/genética , Pseudomonas/genética , Pseudomonas/metabolismo
8.
Adv Mater ; 33(41): e2102766, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34322928

RESUMO

Microbial polyhydroxyalkanoates (PHA) containing short- and medium/long-chain-length monomers, abbreviated as SCL-co-MCL/LCL PHAs, generate suitable thermal and mechanical properties. However, SCL-co-MCL/LCL PHAs with carbon chain longer than nine are difficult to synthesize due to the low specificity of PHA synthase PhaC and the lack of either SCL- or MCL/LCL monomer precursor fluxes. This study succeeds in reprogramming a ß-oxidation weakened Pseudomonas entomophila containing synthesis pathways of SCL 3-hydroxybutyryl-CoA (3HB) from glucose and MCL/LCL 3-hydroxyalkanoyl-CoA from fatty acids with carbon chain lengths from 9 to 18, respectively, that are polymerized under a low specificity PhaC61-3 to form P(3HB-co-MCL/LCL 3HA) copolymers. Through rational flux-tuning approaches, the optimized recombinant P. entomophila accumulates 55 wt% poly-3-hydroxybutyrate in 8.4 g L-1 cell dry weight. Combined with weakened ß-oxidation, a series of novel P(3HB-co-MCL/LCL 3HA) copolymers with over 60 wt% PHA in 9 g L-1 cell dry weight have been synthesized for the first time. P. entomophila has become a high-performing platform to generate tailor-made new SCL-co-MCL/LCL PHAs.


Assuntos
Poli-Hidroxialcanoatos/metabolismo , Pseudomonas/metabolismo , Acil Coenzima A/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ácidos Graxos/metabolismo , Glucose/metabolismo , Hidroxibutiratos/química , Hidroxibutiratos/metabolismo , Família Multigênica , Oxirredução , Plasmídeos/genética , Plasmídeos/metabolismo , Poliésteres/química , Poliésteres/metabolismo , Poli-Hidroxialcanoatos/química , Pseudomonas/genética
9.
Essays Biochem ; 65(2): 393-403, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-33885142

RESUMO

With the rapid development of systems and synthetic biology, the non-model bacteria, Halomonas spp., have been developed recently to become a cost-competitive platform for producing a variety of products including polyesters, chemicals and proteins owing to their contamination resistance and ability of high cell density growth at alkaline pH and high salt concentration. These salt-loving microbes can partially solve the challenges of current industrial biotechnology (CIB) which requires high energy-consuming sterilization to prevent contamination as CIB is based on traditional chassis, typically, Escherichia coli, Bacillus subtilis, Pseudomonas putida and Corynebacterium glutamicum. The advantages and current status of Halomonas spp. including their molecular biology and metabolic engineering approaches as well as their applications are reviewed here. Moreover, a systematic strain engineering streamline, including product-based host development, genetic parts mining, static and dynamic optimization of modularized pathways and bioprocess-inspired cell engineering are summarized. All of these developments result in the term called next-generation industrial biotechnology (NGIB). Increasing efforts are made to develop their versatile cell factories powered by synthetic biology to demonstrate a new biomanufacturing strategy under open and continuous processes with significant cost-reduction on process complexity, energy, substrates and fresh water consumption.


Assuntos
Halomonas , Biotecnologia , Engenharia Celular , Halomonas/genética , Halomonas/metabolismo , Engenharia Metabólica , Biologia Sintética
10.
Nat Commun ; 12(1): 1411, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33658500

RESUMO

Genetically programmed circuits allowing bifunctional dynamic regulation of enzyme expression have far-reaching significances for various bio-manufactural purposes. However, building a bio-switch with a post log-phase response and reversibility during scale-up bioprocesses is still a challenge in metabolic engineering due to the lack of robustness. Here, we report a robust thermosensitive bio-switch that enables stringent bidirectional control of gene expression over time and levels in living cells. Based on the bio-switch, we obtain tree ring-like colonies with spatially distributed patterns and transformer cells shifting among spherical-, rod- and fiber-shapes of the engineered Escherichia coli. Moreover, fed-batch fermentations of recombinant E. coli are conducted to obtain ordered assembly of tailor-made biopolymers polyhydroxyalkanoates including diblock- and random-copolymer, composed of 3-hydroxybutyrate and 4-hydroxybutyrate with controllable monomer molar fraction. This study demonstrates the possibility of well-organized, chemosynthesis-like block polymerization on a molecular scale by reprogrammed microbes, exemplifying the versatility of thermo-response control for various practical uses.


Assuntos
Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Engenharia Metabólica/métodos , Poli-Hidroxialcanoatos/metabolismo , Ácido 3-Hidroxibutírico/metabolismo , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Fermentação , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hidroxibutiratos/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microrganismos Geneticamente Modificados , Poliésteres/metabolismo , Temperatura , Imagem com Lapso de Tempo
11.
Metab Eng ; 64: 134-145, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33577951

RESUMO

Halomonas bluephagenesis has been successfully engineered to produce multiple products under open unsterile conditions utilizing costly glucose as the carbon source. It would be highly interesting to investigate if H. bluephagenesis, a chassis for the Next Generation Industrial Biotechnology (NGIB), can be reconstructed to become an extracellular hydrolytic enzyme producer replacing traditional enzyme producer Bacillus spp. If successful, cost of bulk hydrolytic enzymes such as amylase and protease, can be significantly reduced due to the contamination resistant and robust growth of H. bluephagenesis. This also allows H. bluephagenesis to be able to grow on low cost substrates such as starch. The modularized secretion machinery was constructed and fine-tuned in H. bluephagenesis using codon-optimized gene encoding α-amylase from Bacillus lichenifomis. Screening of suitable signal peptides and linkers based on super-fold green fluorescence protein (sfGFP) for enhanced expression in H. bluephagenesis resulted in a 7-fold enhancement of sfGFP secretion in the recombinant H. bluephagenesis. When the gene encoding sfGFP was replaced by α-amylase encoding gene, recombinant H. bluephagenesis harboring this amylase secretory system was able to produce poly(3-hydroxybutyrate) (PHB), poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P34HB), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), ectoine and L-threonine utilizing starch as the growth substrate, respectively. Recombinant H. bluephagenesis TN04 expressing genes encoding α-amylase and glucosidase on chromosome and plasmid-based systems, respectively, was able to grow on corn starch to approximately 10 g/L cell dry weight containing 51% PHB when grown in shake flasks. H. bluephagenesis was demonstrated to be a chassis for productions of extracellular enzymes and multiple products from low cost corn starch.


Assuntos
Halomonas , Ácido 3-Hidroxibutírico , Halomonas/genética , Hidroxibutiratos , Engenharia Metabólica , Amido
12.
Front Bioeng Biotechnol ; 9: 798724, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35071207

RESUMO

Bioactive substances (BAS), such as small molecule drugs, proteins, RNA, cells, etc., play a vital role in many therapeutic applications, especially in tissue repair and regeneration. However, the therapeutic effect is still a challenge due to the uncontrollable release and instable physico-chemical properties of bioactive components. To address this, many biodegradable carrier systems of micro-nano structures have been rapidly developed based on different biocompatible polymers including polyhydroxyalkanoates (PHA), the microbial synthesized polyesters, to provide load protection and controlled-release of BAS. We herein highlight the developments of PHA-based carrier systems in recent therapeutic studies, and give an overview of its prospective applications in various disease treatments. Specifically, the biosynthesis and material properties of diverse PHA polymers, designs and fabrication of micro- and nano-structure PHA particles, as well as therapeutic studies based on PHA particles, are summarized to give a comprehensive landscape of PHA-based BAS carriers and applications thereof. Moreover, recent efforts focusing on novel-type BAS nano-carriers, the functionalized self-assembled PHA granules in vivo, was discussed in this review, proposing the underlying innovations of designs and fabrications of PHA-based BAS carriers powered by synthetic biology. This review outlines a promising and applicable BAS carrier platform of novelty based on PHA particles for different medical uses.

13.
Metab Eng ; 54: 69-82, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30914380

RESUMO

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is a promising biopolyester with good mechanical properties and biodegradability. Large-scale production of PHBV is still hindered by the high production cost. CRISPR/Cas9 method was used to engineer the TCA cycle in Halomonas bluephagenesis on its chromosome for production of PHBV from glucose as a sole carbon source. Two TCA cycle related genes sdhE and icl encoding succinate dehydrogenase assembly factor 2 and isocitrate lysase were deleted, respectively, in H. bluephagenesis TD08AB containing PHBV synthesis genes on the chromosome, to channel more flux to increase the 3-hydroxyvalerate (3HV) ratio of PHBV. Due to a poor growth behavior of the mutant strains, H. bluephagenesis TY194 equipped with a medium strength Pporin-194 promoter was selected for further studies. The sdhE and/or icl mutant strains of H. bluephagenesis TY194 were constructed to show enhanced cell growth, PHBV synthesis and 3HV molar ratio. Gluconate was used to activate ED pathway and thus TCA cycle to increase 3HV content. H. bluephagenesis TY194 (ΔsdhEΔicl) was found to synthesize 17mol% 3HV in PHBV. Supported by the synergetic function of phosphoenolpyruvate carboxylase and Vitreoscilla hemoglobin encoded by genes ppc and vgb inserted into the chromosome of H. bluephagenesis TY194 (ΔsdhE) serving to enhance TCA cycle activity, a series of strains were generated that could produce PHBV containing 3-18mol% 3HV using glucose as a sole carbon source. Shake flask studies showed that H. bluephagenesis TY194 (ΔsdhE, G7::Pporin-ppc) produced 6.3 g/L cell dry weight (CDW), 65% PHBV in CDW and 25mol% 3HV in PHBV when grown in glucose and gluconate. 25mol% 3HV was the highest reported via chromosomal expression system. PHBV copolymers with different 3HV molar ratios were extracted and characterized. Next-generation industrial biotechnology (NGIB) based on recombinant H. bluephagenesis grown under unsterile and continuous conditions, allows production of P(3HB-0∼25mol% 3HV) in a convenient way with reduced production complexity and cost.


Assuntos
Cromossomos Bacterianos , Ciclo do Ácido Cítrico/genética , Engenharia Genética , Halomonas , Poliésteres/metabolismo , Ácido 3-Hidroxibutírico/genética , Ácido 3-Hidroxibutírico/metabolismo , Cromossomos Bacterianos/genética , Cromossomos Bacterianos/metabolismo , Halomonas/genética , Halomonas/metabolismo , Ácidos Pentanoicos/metabolismo
14.
ACS Synth Biol ; 7(8): 1897-1906, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-30024739

RESUMO

Promoters for the expression of heterologous genes in Halomonas bluephagenesis are quite limited, and many heterologous promoters function abnormally in this strain. Pporin, a promoter of the strongest expressed protein porin in H. bluephagenesis, is one of the few promoters available for heterologous expression in H. bluephagenesis, yet it has a fixed transcriptional activity that cannot be tuned. A stable promoter library with a wide range of activities is urgently needed. This study reports an approach to construct a promoter library based on the Pporin core region, namely, from the -35 box to the transcription start site, a spacer and an insulator. Saturation mutagenesis was conducted inside the promoter core region to significantly increase the diversity within the promoter library. The promoter library worked in both E. coli and H. bluephagenesis, covering a wide range of relative transcriptional strengths from 40 to 140 000. The library is therefore suitable for the transcription of many different heterologous genes, serving as a platform for protein expression and fine-tuned metabolic engineering of H. bluephagenesis TD01 and its derivative strains. H. bluephagenesis strains harboring the orfZ gene encoding 4HB-CoA transferase driven by selected promoters from the library were constructed, the best one produced over 100 g/L cell dry weight containing 80% poly(3-hydroxybutyrate- co-11 mol % 4-hydroxybutyrate) with a productivity of 1.59 g/L/h after 50 h growth under nonsterile fed-batch conditions. This strain was found the best for P(3HB- co-4HB) production in the laboratory scale.


Assuntos
Halomonas/metabolismo , Engenharia Metabólica/métodos , Poli-Hidroxialcanoatos/metabolismo , Regiões Promotoras Genéticas/genética
15.
Zhong Yao Cai ; 31(8): 1244-6, 2008 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-19112909

RESUMO

OBJECTIVE: To prepare and characterize Herba pogostemonis, Rhizoma atractylodis and Radix aucklandiae compound essential oil-beta-cyclodextrin complex. METHODS: The essential oil-p3-cyclodextrin complex was prepared by colloidal mill method. TLC, XRD, DSC and TGA analysis were applied to characterize it. RESULTS: The complex inclusion rate of essential oil-beta-CD complex was 82.4%, and the complex recovery was 80.7%. The formation of essential oil-beta-CD complex was proved by the results of TLC, XRD, DSC, TGA analysis. CONCLUSION: The stability of compound essential oil is improved by the preparation of oil beta-cyclodextrin complex.


Assuntos
Plantas Medicinais/química , Tecnologia Farmacêutica/métodos , beta-Ciclodextrinas , Asteraceae/química , Atractylodes/química , Cromatografia em Camada Delgada , Coloides , Portadores de Fármacos , Estabilidade de Medicamentos , Medicamentos de Ervas Chinesas/isolamento & purificação , Lamiaceae/química , Óleos Voláteis/análise , Óleos Voláteis/isolamento & purificação , Temperatura , Difração de Raios X
16.
Zhonghua Xin Xue Guan Bing Za Zhi ; 33(4): 320-2, 2005 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-15932660

RESUMO

OBJECTIVE: To investigate the effect of fluvastatin on blood levels of c-reactive protein (CRP), tumor necrosis factor alpha (TNFalpha) and cardiac troponin I (cTnI) in patients with unstable angina undergoing percutaneous coronary intervention (PCI). METHODS: Sixty patients who underwent PCI from July 2002 to April 2004 in our hospital were randomized into two groups: control group; fluvastatin group (40 mg/d). Serum levels of CRP, TNFalpha and cTnI were measured before and after two weeks treatment (in the early morning of the procedure) and at 24 hours after the procedure. RESULTS: The serum levels of CRP, TNFalpha and cTnI in fluvastatin group were distinctly lower than those in control group before (P < 0.01) and after the procedure (P < 0.01), respectively. CONCLUSION: The result suggested that PCI could lead to a detectable increase in serum levels of CRP, TNFalpha and cTnI in patients with coronary heart disease; Fluvastatin could significantly decrease the serum levels of CRP, TNFalpha and cTnI in patients with coronary heart disease; Fluvastatin could also decrease the serum levels of CRP, TNFalpha and cTnI in patients with PCI.


Assuntos
Angina Instável/sangue , Angina Instável/tratamento farmacológico , Anticolesterolemiantes/uso terapêutico , Ácidos Graxos Monoinsaturados/uso terapêutico , Indóis/uso terapêutico , Proteína C-Reativa/metabolismo , Fluvastatina , Humanos , Troponina I/sangue , Fator de Necrose Tumoral alfa/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...